skip to main content


Search for: All records

Creators/Authors contains: "Bao, Duoduo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Medium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions. It is easy to mould into any shape, forming surfaces with a pronounced smoothness. While PDMS is broadly used for the fabrication of microfluidic devices, it swells in organic solvents, presenting severe limitations for the utility of such devices for applications employing non-aqueous fluids. Nevertheless, this swelling is reversible, which proves immensely beneficial for loading samples into the PDMS solid matrix. Transferring molecular-rotor dyes (used for staining prokaryotic cells and amyloid proteins) from non-viscous solvents into PDMS induces orders-of-magnitude enhancement of their fluorescence quantum yield and excited-state lifetimes, providing mechanistic insights about their deactivation pathways. These findings demonstrate the unexplored potential of PDMS as a solid solvent for optical applications. 
    more » « less
    Free, publicly-accessible full text available February 5, 2025
  2. Abstract

    Attaining long‐lived charge‐transfer (CT) states is of the utmost importance for energy science, photocatalysis, and materials engineering. When charge separation (CS) is slower than consequent charge recombination (CR), formation of a CT state is not apparent, yet the CT process provides parallel pathways for deactivation of electronically excited systems. The nuclear, or Franck‐Condon (FC), contributions to the CT kinetics, as implemented by various formalisms based on the Marcus transition‐state theory, provide an excellent platform for designing systems that produce long‐lived CT states. Such approaches, however, tend to underestimate the complexity of alternative parameters that govern CT kinetics. Here we show a comparative analysis of two systems that have quite similar FC CT characteristics but manifest distinctly different CT kinetics. A decrease in the donor‐acceptor electronic coupling during the charge‐separation step provides an alternative route for slowing down undesired charge recombination. These examples suggest that, while infrequently reported and discussed, cases where CR is faster than CS are not necessarily rare occurrences.

     
    more » « less